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EFFECT OF CHEMICAL REACTIONS ON FLOW AND MASS TRANSFER IN A LIQUID 

FILM IN THE PRESENCE OF SURFACE-ACTIVE MATERIALS 

A. A. Golovin and L. M. Rabinovich UDC 532.65 

To the thin-film approximation an investigation is made of the effect of surface- 
active materials on the hydrodynamics and mass transfer in liquid films falling 
under gravity in the presence of surface chemical reactions. 

In many chemical engineering processes which occur in film reactors and packed and tray 
absorbers mass transfer takes place under conditions in which the surface tension at the inter- 
face between the liquid film and the adjacent gas stream is not constant, which is caused in 
particular by the presence of surface-active materials [i]. The surface tension gradients 
which arise in this case and the shear stresses connected with them as a result of the Maran- 
goni effect can have an important effect on the hydrodynamics and rate of mass transfer of 
materials dissolving in the film [2]. In a number of industrial processes (such as, for in- 
stance, the purification of gases by chemisorption) mass transfer into the film is accompanied 
by chemical reactions with the participation of surface-active reagents and products [3]. 

An effect of surface-active materials on mass transfer can arise as follows. In the 
first place both the material itself and also the chemical reactions can lead to a loss of 
stability of the flow and to the appearance of convective cells which intensify transfer 
close to the free surface [4]. Such effects have been investigated, for instance, in [5, 6]. 
In the second place, the surface-active material can significantly change the velocity at the 
film surface, which can also influence the mass transfer characteristics. An investigation 
Of the effect of insoluble surface-active materials on mass transfer in a laminar film with a 
slowly varying thickness not allowingfor chemical reactions was carried out in [7]. 

The aim of the present work was to investigate the effect of surface chemical reactions 
involving the participation of a surface-active material on the hydrodynamics and mass trans- 
fer in a liquid film within the framework of the second of the mechanisms indicated above. 
Here a film in laminar flow along an inclined plane under the influence of gravity forces is 
considered, where the film is almost planar and its free surface is in contact with an adjacent 
gas. The flow rate of the liquid in the film is regarded as being constant and equal to Q. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol, 53, No. 4, pp. 593-600, October, 
1987. Original article submitted June 24, 1986. ~!< 
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Fig. i. Liquid film flowing in a gravity field: i) 
reaction zone (x > 0); 2) zone without chemical reac- 
tion (x < 0). 

An insoluble surface-active material is present at the surface of the fiim which participates 
in the chemical reactions. The dependence of the reaction rate on the concentration is given 
by the function F(F)o Since steady-state flow of the film is of interest, it is suitable to 
consider that the kinetic function F(F) has one zero F,, F(F,) = 0. Such a function describes 
a wide class of surface reactions occurring in adsorption + chemical reaction flowsheets and 
also in various autocatalytic reactions. 

A system of coordinates is selected as shown in Fig= i. The film will be considered to 
be semiinfinite in extent (x > 0). The equations and boundary conditions describing the 
motion of the film to the thin-layer approximation ("quasi-one-dimensional approximation") 
have the form: 

(}zu 
v + g =o,  (1) ay 2 

au OF - ~ -  , y = O ,  u = O ;  y = h ( x ) ,  ~ . 
Ox oy 

The solution of (i) and (2) is 
g 

2v 

do: 
8----- --= const. 

d r  

(2) 

y2_[_ ( + h (x) + ~ dF ) 
y' (3) 

from which the velocity at the surface of the film is found as 

+ 8h (x) ! er  
2,; ~ dx 

The following condition must be satisfied to ensure the validity of the quasi-one-di- 
mensional approximation [7] : 

dh d~F 

Neglecting surface diffusion, an equation can be written for describing the steady-state 
distribution of the surface-active material at the surface: 

d (usr) = F (F). (5) 
dx 

Taking into account the constancy of the liquid flow rate, a system of equations is ob- 
tained for describing the dependence of the film thickness and of the concentration of the 
surface-active material on the longitudinal coordinate: 

1 gh 3 1 8h 2 dr -+ =Q, 
3 v 2 ~ dx (6) 

dx 2 v ~ dx 
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o 
Fig. 2. 
gram of the system (9), 
f(y) = i 0 ( I  - -  7 ) ,  

20 30 90 ~ , 

R e l a t i o n s h i p  z (x)  and the  phase  d i a -  
(10) f o r  e = 10, 

Using the dimensionless variables 

x'= x/L, z : h/h o, 7 : F/F., e ~ (9/vQg2)I/36F,/2Lp, 

L : Q / h o  k, f (7) - - 2 F  (F,?)/3kF , ,  h o :  (3vQ/g) W~, (8) 

the system of equations (6), (7) can be reduced to the following form: 

dz (1 - -  z 3) (4-- z 3) 3zZf (7) 

dx ez (2z3~-4) 7 Y (2z~+ 4) (9) 

d? 1--z  8 (I0) 

dx ez z 

Here and s u b s e q u e n t l y  t h e  pr ime on t h e  d i m e n s i o n l e s s  v a r i a b l e  x '  i s  o m i t t e d .  

The s t a t e  o f  e q u i l i b r i u m  of  t h e  sys t em ( 9 ) ,  (10) :  z = 1, y = 1 ( f ( 1 )  = 0 ) ,  c o r r e s p o n d s  
to steady-state flow of the film with respect to the longitudinal coordinate. 

Let us first consider the case where z and Y differ slightly from the uniform values 
which have been indicated. In the neighborhood of the singular point the linearized system 
becomes the following: 

dzl 3 if( l)  d71 3 
--= zl - - Y 1 ,  --=----Zl (ii) 

dx 2e 2 dx e 

Here zx = z -- I, Yx = Y -- i, I=,I << 1, Iv,l << i, f' E df/dy. 

From the system (Ii) a characteristic equation is obtained, the roots of which are 

3 ( 9 •  f ' ( 1 ) )  1 / 2 . .  (12) 

~1,~=--- 4--~-' +-- 16e 2 ' e 2 

I t  can be s een  f rom Eq. (12) t h a t  t h e  t y p e  o f  t he  s i n g u l a r  p o i n t  on t h e  phase  p l a n e  (z ,  
y) and the  c o r r e s p o n d i n g  n a t u r e  of  t h e  d i s t r i b u t i o n s  o f  t h e  c o n c e n t r a t i o n  o f  t h e  s u r f a c e -  
active material and of the film thickness with respect tothe flow depends strongly on the 
ratio of the quantities f'(1) and E. In the case of inactive materials (E > 0) the following 
situations are possible: f'(1) > 0, ~, > 0, la < 0 represents a saddle; --3/(8e) < f'(1) < 0, 
~, < 0, 12 < 0 is stable node; f'(1) < --3/(8e), %x,a = mr • imi, m r < 0 is a stable focal 
point. In the case of a surface-active material, strictly speaking (where e < 0), it is 
found correspondingly that: f'(1) < O, %x < 0, ~2 > 0 represents a saddle; 0 < f'(1) < --3/ 
(St), ~, > 0, ~2 > 0 is an unstable node; f'(1) > --3/(8e), ~,,2 = ~r • i~i, mr > 0 is an un- 
stable focal point. 

Thus, all the possible equilibrium positions of the system (6), (7) appear to be unstable 
in the case where the surface-active material is present, i.e., the concentration at the film 
surface and the film thickness do not lead towards uniform states, but conversely, the system 
"speeds up" and enters a regime which is not described by the quasi-one-dimensional approxima- 
tion. On the other hand, in the case of inactive materials the equilibrium state at f'(1) < 
0 is stable, and the film thickness and concentration tend towards the constant values z = 1 
and y = i. The existence of a stable equilibrium position of the "focal point" type is par- 
ticularly interesting. This means that when f'(1) < --3/(8e) the film thickness and the surface 
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concentration experience undergo damped oscillations along the coordinate (Fig. 2). Thus, 
in the direction of the flow a wavy, three-dimensional structure of the rippled type is 
formed on the surface of the film. For the quasi-one-dimensional approximation to remain 
valid it is necessary to satisfy conditions equivalent to the inequality (4): 

I dz I gh~ [ d2Y I ghold'/dx' 
3 kz ' (13)  

which  a r e  v a l i d  f o r  s u f f i c i e n t l y  s m a l l  i n i t i a l  d e v i a t i o n s  o f  t~ and y~ ,  

I t  does  n o t  a p p e a r  t o  be p o s s i b l e  t o  f i n d  an a n a l y t i c a l  s o l u t i o n  o f  t h e  s y s t e m  ( 6 ) ,  (7) 
even  i n  t h e  c a s e  o f  k i n e t i c s  d e s c r i b e d  by t h e  l i n e a r  f u n c t i o n  F ( r ) .  However ,  i n  t h e  c a s e  o f  
heavy  f i l m s  w i t h  l a r g e  l i q u i d  f l o w  r a t e s ,  o r  i n  t h e  c a s e  o f  f i l m s  c o n t a i n i n g  d i l u t e  s u r f a c e -  
a c t i v e  m a t e r i a l s ,  t h e  p a r a m e t e r  g a p p e a r s  to  be s m a l l ,  and f o r  s o l v i n g  t h e  s y s t e m  ( 6 ) ,  (7) 
i t  i s  p o s s i b l e  t o  u se  p e r t u r b a t i o n  t h e o r y  w i t h  g i v e n  b o u n d a r y  c o n d i t i o n s ~  I t  w i l l  be  assumed 
t h a t  t h e  f i l m  f l o w s  i n t o  t h e  " r e a c t o r "  zone  (x > 0) f rom a p r e r e a c t i o n  zone  (x < 0 ) ,  where  t h e  
d i s t r i b u t i o n  o f  t h e  s u r f a c e - a c t i v e  m a t e r i a l  a l o n g  t h e  s u r f a c e  i s  n o t  i n f l u e n c e d  by t h e  chemi -  
c a l  c h a n g e s .  Fa r  f rom t h e  r e a c t i o n  zone  (x § --@ t h e  f i l m  w i l l  be r e g a r d e d  as  u n p e r t u r b e d :  
h (x )  = ho ,  F = r o  (dashed  l i n e  i n  F i g .  1 ) .  Then f o r  t h e  s t e a d y - s t a t e  d i s t r i b u t i o n  o f  t h e  s u r -  
f a c e - a c t i v e  m a t e r i a l  i t  i s  found  t h a t  d(U s ~ / d x  = 0,  whence U s F = q = c o n s t ,  where  t h e  g i v e n  
f l o w  o f  t h e  s u r f a c e - a c t i v e  m a t e r i a l  i s  e q u a l  to  q = F o g h ] / 2 v .  The s y s t e m  o f  e q u a t i o n s  d e -  
s c r i b i n g  t h e  d i s t r i b u t i o n  o f  t h e  c o n c e n t r a t i o n  o f  t h e  s u r f a c e  m a t e r i a l  and t h e  f i l m  t h i c k n e s s  
t han  have  t h e  forms  

gh s Oh ~ dF =0, { gh2 6h 
3v q- 2~- dx k T q- ~ 

or, in terms of the dimensionless variables 

It has been shown in [7] that equations (14) or (15) 

dr i l r  = q (14) 
dx J 

~ F 0 / F  , .  (15) 

have  t h e  s o l u t i o n  z ~1 ,  y~a ,  and 
also a neutral solution giving an implicit dependence of z and Y on x; in particular, the 
following integral system of (15) exists: 

2 
2ek  3 ' I l - -z8  ] 4--Z3 )_ =x-+-C ,  (16) 

where C is a constant determined from the boundary conditions. 

The relationship (16) coincides with the analogous relationship from [7] to within the 
accuracy of selecting the non-dimensional parameters. Furthermore, according to [7] the solu- 
tion z ~-i, ~-~ is stable for inactive materials ( s> 0) and unstable for surface-active 
materials (8< 0) with respect to steady-state perturbations distributed in the direction of 
flow of the film. This provides a basis for starting that in the case e> 0, the steady-state 
of the film in the prereaction zone will be z ---~i, ?--~e , while in the case e< 0 it will be 
described by the relationship (16), where the constant C is determined from the condition for 
merging with the solution at x > 0 (the implicit dependence of 7 on x is not used here be- 
cause of its very unwieldy nature). From what has been said above, it follows that for 
establishing the shape of the film, and the distribution of the concentration of the reacting 
inactive material it is necessary to set up the following boundary condition: z = i, ~=a 
at x = 0. Then, as in the case of the surface-active material, the boundary condition at 
x = 0 will be the condition for the conservation of its flux: y(z 2 + 4/3cZY'x) = a. 

It is not convenient to carry out a study of the behavior of the film in the presence of 
a real surface-active material within the framework of our present approach, since it is clear 
from the analysis which has been carried out that the steady state which is uniform in three 
dimensions is unstable and the flow always passes into a regime which is not described by 
the quasi-one-dimensional approximation. 

Below we will restrict ourselves to a study of the film properties in the presence of in- 
active (i.e., not surface-active) materials which react at the free surface. The parameter 
r will be assumed to be small: 0 <e<< i. The system of equations (6) and (7) can then be 
written in the following dimensionless form supplemented by boundary conditions: 

Z3"JcEZ~ =]' ( '  (ZZ-~ + e Z ' ~ ) ) i = f ( ' ) ;  (17) 

x =0 ,  z = 1, Y = ~- (18) 
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Since the small parameter occurs in the higher derivatives, the problem proves to be 
singularly perturbed. It is easy to show that if the solution is sought according to regular 
perturbation theory in the form of a power series in e, then two of the boundary conditions 
in (18) are not satisfied. The method of merging asymptotic expansions will therefore be 
used in seeking the solution. By introducing a "stretched-out" variable $ = x/r which is 
close to zero, the system of relationships 

z ~ + z ~ ? ~ = l ,  (y(z"+,  

is obtained, where z and ~ are functions of ~. 

3 

=0, 

The zeroth and first terms of the expansions are then determined in turn: 

2 (exp / 

- - - - - ~ ) - - 1 ) - I -  o(e), 

3 ~ ) _ i ) t + o ( 8 )  
2 r I ,  , , 

Let us now pass on to determining the external approximation. 
the formy = ~o + iY~ + ..., z = Zo + ez~ + ... From (17), 
to be zo = i, ~o' = f(Yo), or 

i .o dy - - x + C .  

,~ f('~) 

(19) 

(20) 

(21) 

(22) 

The s o l u t i o n  i s  sought in  
the zeroth approximation is found 

(23) 

The constant C is determined from the condition for merging with the internal solution. 
On converting in equation (23) to the internal variables, we can write 

~ dy = ~ + C, or - - ,  (~ + C) = ~ (C) + , '  (O ~- % 
�9 f(V) 

From the relationship (21), (22) it is found that ~(C) = ~, whence C = ~-x(~) = 0. The 
zeroth external approximation is given by the implicit function of yo(x): 

~ -- x .  (24) 
d? 

Then, using (24) and so lv ing  the equa t ion  fo r  the  f i r s t  approximat ion ,  express ions  are  
found for  y~ and zx: 

1 :(4,0) 2 ( zl= 3 f(Y0), W - A  - - f ( ? o )  ~Y0--=+ i - ~ - ' - d Y )  �9 (25)  
f (~) 3 ~ ~ , , 

A merging of the internal and external expansions is carried out in order to determine the 
constant A. To do this, a change is made in the external expansion to the internal variable 

= ~o+e~ = ~o(~)+8(A f(?o(eUlf(a) 2 f ( ? o ( e ~ ) ) x 3  

(26) 

(~o(e~)--a+ f Vf' dv +o(8)=~+[(~)~+8A+o(8) .  x k 

The expression (22) exists for the internal expansion. By comparing (26) and (22) and 
taking into account that the last term in (22) is exponentially small, it is found that A = 
-2/3 =f(~). 

Thus, finally we have the following composite expansions for z and T respectively: 

( ) )  1 (f (?o) -- f (~) exp 3x + o (e), z = l - -  e 3 28~x 

"7 -- %-- 8 --if-- f (Vo) % + ,  ._dY -[- 8 .~xf (a) exp 28= 

(27) 

(28) 
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It is not difficult to show that when f'(1) < 0, the expansions (27) and (28) are uni- 
formly applicable over the entire region of the reaction zone x > 0. It can be shown that 
y, tends towards a finite limit when x § ~. To do this, let us consider the external expan- 
sion y = Yo + eyx. The dependence of Yo on x is given by the implicit function (24). Assum- 
ing that f(y) has only a single zero y = 1 and that f'(1) < 0, it is seen that when To ~ i, 
f(y) - f'(1)(y -- l) + o(y -- i). The integral (24) can then be split up so that 

vo dv ,.,, 1 In I?o--ll + Co; 3 r(v) 
whence y ~ 1 + C1 e x p ( f ' ( 1 ) x )  § 1 when x § ~. 

The q u a n t i t y  yx s a t i s f i e s  t h e  d i f f e r e n t i a l  e q u a t i o n  

2 
v ; -  f '  (Vo) v, = - - j -  (Vo f (Vo))'. 

Bearing in mind that f(y) is the necessary number of times that differentiation can be car- 
ried out continuously, the following equation is found for Yx when x § ~: 

2 ((1+ Cexp(['x)) C[' exp (rx)), [ ' =  [ '  (1), 
3 

~'i-- [ '  (1) V , = - -  

the general solution of which is 

? i =  A exp (['x) - -  , ) )  

From this it is easy to see that Yt § 0 when x § ~, since f' ~ f'(1) < 0. From what has been 
said it can be concluded that the expansions (27) and (28) are applicable over the entire 
region of the reaction zone x > 0. 

It should also be noted that the case of small values ~ > 0 corresponds to a stable node 

on the phase plane (z, y). 

The results which have been obtained are strongly dependent on the value of a. Fro m 
equation (9) it is seen that z'(O) = --f(a)/2a. Hence, for the quasi-one-dimensional approxi- 
mation to be valid when a ~ 0 it is necessary that lim (f(a)/2~) < ~. 

a-~O 
Let us now consider how changes in the flow of the film caused by the presence of an in- 

soluble, chemically reacting, surface-inactive material on its surface influence mass trans- 
fer between the film and the adjacent gas. As in [7], it will be assumed that the material 
diffusing in the film does not enter into chemical reactions and does not influence the sur- 
face tension of the film, and that the corresponding Peclet number is large. The following 
formula can then be used for the local diffusion flux: 

j =Co  OUs i/2 dx)_ l /2 .  (29)  

The integral flux into the film is 

x 

, :  

I f  Us = Uo + ~Ut, t h e n  I = I o ( 1  + 1/2E<6U>),  where  Io  = 2Co(DUox/~) ~/=,  6U = Ux/Uo. 

(6U) 1 [ : ' 6Udx. 
X 

In  ou r  c a s e ,  Us = Uo + CUx = Oo(1 + e~U), 6U = Ux/Uo. Then from (30) and t h e  e x p r e s s i o n  
f o r  U s i t  f o l l o w s  t h a t  60 = 2 / 3 ( f ( y o )  -- f ( ~ ) e x p ( - - 3 x / ( 2 E ) ) ) .  Then <6U~ = 2 / 3 ( y o  -- a ) / x - -  (4 /  
9 ) r  N e g l e c t i n g  t e rms  o f  t he  o r d e r  o ( r  t h e  f o l l o w i n g  e x p r e s s i o n s  a r e  ob -  
t a i n e d  f o r  t h e  i n t e g r a l  f l u x  and t h e  v a l u e  o f  t h e  r e l a t i v e  change  

I = ~  1 +  3 8 - - ! ,  ~ =  
x j I o 3 x 

Thus, the dependence of the relative change on the flux as a result of the reacting 
surface-active material A(x) decreases with i/x as the film length increases, since when 
x + ~, yo(x) + I, and the film tends towards the unperturbed state z = i. 
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NOTATION 

u, velocity component along x axis; v, B, kinematic and dynamic viscosities; p, density 
of liquid; g, projection of the acceleration of free fall onto the x axis; ~, surface tension 
at the liquid--gas interface; F, surface concentration of insoluble surface-active material; 
h(x), film thickness; F(F), kinematic function expressing the dependence of the rate of the 
chemical surface reaction on the concentration of the surface-active material; k, reaction 
rate constant of dimensions I/T; Co, concentration of component of the gas which dissolves in 
the liquid close to the film surface; D, diffusion coefficient of gas dissolved in the film. 
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INFLUENCE OF LONGITUDINAL MIXING ON DISSOLUTION KINETICS OF A POLYDISPERSE 

SYSTEM OF PARTICLES 

S. P. Fedorov, Yu. V. Sharikov, 
and V. D. Lunev 

UDC 541.182:532.529 

The problem of dissolution of a polydisperse system of particles in a semibounded 
channel is formulated and investigated with longitudinal mixing in the solid phase 
taken into account~ 

To describe processes proceeding in polydisperse systems, methods of the mechanics of 
heterogeneous media [i, 2] have recently received greater and greater currency. According to 
[i], utilization of the so-called continuity equations for functions of the particle size 
distribution density type turns out to be most productive when studying the motion of inclu- 
sions interacting with a dispersion medium and hence changing size. Thus on the basis of 
this approach mathematical models of certain processes of such nature are obtained and in- 
vestigated in [3, 4]. 

Let us examine the steady process of dissolution of a polydisperse system of solid in- 
clusions entrained by a fluid flow moving in a semibounded channel. Such a representation 
can be used if it is assumed that the main particle mass is dissolved without succeeding in 
reaching the opposite boundary of the channel. Let us take the quasihomogeneity hypothesis 
[5] that the spacings in which the mixture flow parameters change substantially, are much 
greater than the particle size and their separation. We will consider the inclusions whose 
sizes are a continuous random variable, tobe sufficiently numerous so that their granulom- 
etric composition could be described by a continuous function of the size distribution dens- 
ity type (not normalized to one) that satisfies the continuity equation in the space of their 
linear dimensions. If the fluctuations of the linear rate of particle dissolution is neglec- 
ted, then for the developed turbulent flow case, the continuity equation can be written in 
the form 

-81 8r (fv) .i_ D al 2 . . . . .  8 (1 ~ Io) wfo (r). ( 1 )  

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 53, No. 4, pp. 600-607, October, 
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